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PYROLYSIS OF METHANE AND THE C2 HYDROCARBONS 
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INTRODUCTION 

Since i t s  invention by Glick, Squire and Hertzberg ( l ) ,  the 
s ingle-pulse  shock tube has  been adopted by many inves t iga to r s  f o r  
chemical k i n e t i c  s tud ies ,  so that i t  i s  rap id ly  developing i n t o  a 
standard laboratory too l .  I n  t h i s  type of shock tube a sample o f  gas 
can be heated rap id ly ,  held under known temperature and pressure 
condi t ions f o r  a known time i n  the range of 0.1 t o  10 mil l iseconds,  
cooled rapidly,  and then removed f o r  ana lys i s .  Optical  and o ther  
measurements can be made on the gas during the hea t ing  t i m e .  I n  
e a r l i e r  shock tubes gas samples of known h i s t o r y  could not be recovered. 
It is undoubtedly the a b i l i t y  t o  recover samples of reac ted  gas t h a t  
has made t h i s  type o f  tube so popular w i t h  chemists, along w i t h  the 
f a c t  that the shock tube i s  one of the few techniques f o r  obtaining 
e n t i r e l y  homogeneous reac t ion  data. 

This paper i s  a review of recent  shock-tube work as i t  appl ies  
t o  the  pyro lys i s  of these simple hydrocarbons. 

EXPERIMENTAL 

Our shock tube i s  showri schematical ly  i n  Fig. 1. It was made of . 
3-inch s t a i n l e s s  s t e e l  pipe,  the reac t ion  sec t ion  being 12 f e e t  long 
and the d r i v e r  sec t ion  ad jus tab le  i n  l ength  between 6 and 28 f ee t ,  
so dwell  times up t o  15 mil l iseconds could be obtained with helium 
d r i v e r  gas. Ths surge tank had a volume of about 50 cubic f e e t .  

For measuring the  incidenc shock speed, two SIN pressure  
t ransducers  spaced 55 and 7 Inches from the  downstream end were used 
(a and b, Figure 1). 
s t a r t  and s top a microsecond timer, and a l s o  t o  s ta r t  two osc i l loscopes .  
One of  these measured the pressure  by means of a t h i r d  SIN gauge, c, 
3 inches from the downstream end, (see Figure 2) while the o ther  
measured the output from a photocel l ,  d, mounted outs ide  a window i n  
the silde o f  t he  shock tube, a l s o  3 inches from the  end ( see  Figure 
3). Di rec t ly  opposite the photoce l l  window was a small tube leading 
t o  a quick-opening valve, e, from which samples o f  gas  could be 
drawn f o r  ana lys i s .  

Gas samples were analyzed before  and a f te r  reac t ion  by a vapor 
chromatograph. I n  s p i t e  of the f a c t  t ha t  the d r i v e r  gas was i n  d i r e c t  
contact  w i t h  the sample during the experiments, no more than 5% d r i v e r  

The amplif ied s i g n a l s  from these  were used t o  
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gas Was found i n  the r eac t an t  gas a f t e r  the runs, and i n  most cases  
the  amount was l e s s  than 1%. As would be expected, the  longer time 
runs showed the g r e a t e s t  contamination. 

In a t y p i c a l  run, a l l  s ec t ions  of the  shock tube were f i rs t  
evacuated, and then the  sample and d r i v e r  gases were added. Since 
the  " t a i lo red  in t e r f ace"  technique (1) was used t o  give a pulse  of 
uniform temperature, small amounts of ni t rogen were usua l ly  added 
t o  the helium d r i v e r  gas, t o  match i t  with the sample and pressure 
r a t i o .  
by the plungers g and h operated by the a u x i l i a r y  shock tube i, and 
a sample of gas taken f o r  ana lys i s  a few seconds later.  The osc i l l o -  
scope t r aces  were recorded w i t h  Polaroid cameras. 

r e f l ec t ed  shock wave technique. They foun'd t ha t  the most  near ly  i d e a l  
condi t ions f o r  k i n e t i c  s tud ie s  occurred when the sample gas was near ly  
a l l  monatomic, while diatomic gases could be s tud ied  with some accuracy 
if measurements were taken near  the  end w a l l  of the shock tube. With 
polyatomic gases, per turba t ions  i n  the  r e f l ec t ed  shock wave due t o  
boundary l aye r  i n t e r a c t i o n s  were so grea t  t h a t  temperatures could not 
be ca lcu la ted  w i t h  any accuracy. Polyatomic gases such a s  hydrocarbons 
must be highly d i lu t ed  wi th  a monatomic gas such a s  argon t o  give 
reasonably i d e a l  conditions,  and a l s o  t o  reduce the  average spec i f i c  
hea t  of the sample gas t o  permit hea t ing  w i t h  reasonable driver/sample 
pressure r a t i o s .  It seems t o  have been s a t i s f a c t o r i l y  demonstrated 
(3 ,4)  t h a t  i f  these condi t ions are f u l f i l l e d ,  gas temperature ca l -  
cu la ted  by the standard methods (5,6) a r e  accurate  t o  about 2$. 
However, we have found that i n  many runs the  pressure,  while coming 
t o  near ly  the t h e o r e t i c a l  value just, behind the  shock wave, subsequent- 
l y  f l u c t u a t e s  f o r  reasons w e  do not  qu l t e  understand. 
t he  ca lcu la ted  temperature by assuming tha t  these f luc tua t ions  cause 
temperature changes according t o  the standard i s e n t r o p i c  equations,  
and f e e l  t h a t  these  corrected temperatures a r e  more accura te  than 
uncorrected ones. Temperatures were a l s o  corrected f o r  heat  of chemical 
reac t ion .  

The two diaphragms f were then  ruptured a t  the  proper times, 

Strehlow and Cohen ( 2 )  have published a discussion of the 

We have corrected 

RESULTS AND DISCCSSION 

Methane. The r a t e  of  methane decomposition has been s tudied 
i n  th ree  very s i m i l a r  s lngle-puise  shock tubes by d i f f e r e n t  i nves t i -  
ga to r s  (7,8,9). There is agreement t h a t  the reac t ion  is f i r s t - o r d e r  
i n  methane concentration, and t h a t  there  is l i t t l e  i n h i b i t i o n  of the 
reac t ion  by products i n  the temperature range s tudied .  The first- 
order  r a t e  cons tan ts  a r e  shown i n  Figure 6. On t h e  whole, agreement 
among the three  s e t s  of da ta  is reasonabley and though the ac t iva t ion  
energies  ca lcu la ted ,  85 Kcal. ( 7 ) ,  93 Kcal. (g), and 101 Kcal. (8 ) ,  
d i f f e r ,  t h i s  may w e l l  be due t o  experimental  e r r o r .  
ac t iva t ion  energ ies  r equ i r e s  an unreasonable value of the  frequency 
f a c t o r  t o  give the observed r a t e s .  While the  lower ac t iva t ion  
energies  seem t o  f i t  i n  b e t t e r  with da ta  obtained by o the r  methods 
a t  lower temperatures ( l O , l l ) ,  the p o s s i b i l i t y  remains tha t  some 
heterogeneous reac t ion  occurred I n  t he  lower-temperature experiments, 
desp i t e  the inves t iga to r s '  bes t  a t tempts  t o  avoid it. 

Figure 5 shows the  product d i s t r i b u t i o n  i n  the  pyro lys i s  o f  
methane fo r ;hea t ing  times of 1.5 mil l iseconds a t  d i f f e r e n t  tempera- 
tures ,  i n  terms of  moles of each product formed p e r  100 moles CIQ 
decomposing. Experiments a t  longer  times show r e l a t i v e l y  more C2H2 

None of these 
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, suggesting that C2H6 i s  an unstable  i n t e r -  
y s i s  thus seems t o  occur stepwise 

CHl+ + C 2 H 6  -+ C2Hq + C2H2 -+ C (1) 

has a very shor t  l i f e t ime  a t  high temperatures. although the  C 2  
There i s  a on between the  product y i e l d s  of Figure 5 and the 
thermodynamic equi l ibr ium da ta  of Figure 4, which shows the r e l a t i v e  
s t a b i l i t y  of each molecule as a funct ion of temperature, the species  
appearing h ighes t  on the  graph being most s t ab le .  These da ta  a re  
taken from the NBS t a b l e s  (12)  although a very s i m i l a r  graph was 
made e a r l i e r  by Kassel (13). 
reac t ion  i s  confirmed by comparison of these two Figures,  
and C H4 show up more prominently i n  Figure 5 than would be expecte 
from fhe equLlibrium curves o f  Figure 4 alone. 

The mechanism of conversion of C H 4  t o  C2% is s t i l l  unse t t led .  
Largely on the b a s i s  of our observed a c t i v a t i o n  energy of  101 Kcal., 
we have prefer red  the  series of r eac t ions  

The stepwise na ture  of the  pyro lys i s  

since c27i 

CH4 -* CH3 + H ( O H ~ 1 0 1  Kcal.) (2)  

(3) 

XH3 -* c2H6 (4)  

CH4 + CH2 + H2 ( ~ ~ - 8 5  Kcal.) (5) 

(6) 

2 c ~ 3  -+ ~ 2 %  (7)  

H + CH,!+ + CH3 + H2 

On t h e  o ther  hand, Kevorkian and eo-workers ( 9 )  have prefer red  the 
reac t ion  sequence 

CH2 + C Q  -* CH3 + H 

because it agrees  b e t t e r  with t h e i r  lower observed a c t i v a t i o n  energy. 
These two reac t ion  sequences both give first order  k i n e t i c s  w i t h  
"cha in  length" of two, and i t  w i l l  r equi re  e i t h e r  some s o r t  o f  d i r e c t  
observation on the r eac t ing  gas, or very accura te  k i n e t i c  measurements, 
t o  decide between the  two. 

Ethane. Pyrolysis  of ethane has  f o r  some t i m e  (14) been 
t h o u g h m o c c u r  by a f r ee - r ad ica l  chain mechanism, as follows: 

C2& -+ 2CH3 (8) 

( 9 )  CH3 + C2Hg -+ C2H5 + CH4 

C2H5 -* C2H4 + H 
H + C2H6 + C 2 3  + H;! 

(10) 

(11) 

(12) 

(13) 

2C2H5 -+ C 4 H l o  or C2H4 + C2H6 

H + C2H5 -* C2H6 or 82 + C2H4 

A number of shock tube experiments (15) have given f u r t h e r  ve r i f i ca -  
t i o n  of t h i s  reac t ion  scheme. 
Shane (16) f o r  example found a t  lower temperatures) t h a t  one mole of 

It has been found ( a s  S teac ie  and 
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cH4 is produced f o r  each 20-25 m o l e s  of (22% i n  the  first s t ages  of 
pyro lys i s .  As pyrolysis  proceeds, the r a t e  constant  f a l l s  o f f  t o  less 
than a t en th  of i ts  o r i g i n a l  value, and the f r a c t i o n  of methane 
produced increases markedly. Ethane pyro lys i s  is st rongly inh ib i t ed  
by methane, a s  would be  expected from the above f r e e  r a d i c a l  s t eps  and 
reac t ion  3. Inhibi t ion by C €Q a l s o  occurs. Quant i ta t ive  ca lcu la t ions  
were made by using rate consEants f o r  the f r e e  r a d i c a l  react ions 
der ived from various sources (and some es t imates)  which showed , t h a t  
these experimental observations should be expected from the above 
mechanism. Finally,  w i t h  the assigned rate constants,  the experimental 
results o f  several  i n v e s t i g a t o r s  could be reproduced over a wide range 
of temperatures, as shown i n  Figure 7. 

From a s e r i e s  of experiments i n  a flow r e a c t o r  i n  which ethane 
has been pyrolyzed i n  the presence o f  a small amount of radioact ive 
methane, Brodskii and co-workers (17) have concluded t h a t  the above 
chain react ion i s  not  the m a i n  one i n  the temperature range of n o -  
8 9 0 ' ~ .  We are n o t  a l t o g e t h e r  satisfied w i t h  the i r  i n t e r p r e t a t i o n  of 
t h e i r  experimental data, and a r e  making ca lcu la t ions  t o  see if t h e i r  
observations can be  interpreted i n  teras of the chain mechanism. 

900 a&; (18) show that t h e r e  a r e  two major react ions,  one t h e  
formation o f  acet  lene, which is a f i r s t - o r d e r  react ion w i t h  a n  a c t i -  
vat ion energy o f  k Kcal. over t he  upper p a r t  o f  the temperatui-e 
range, t h e  o ther  the formation of 1,3-butadiene, which is second- 
order  w i t h  an ac t iva t ion  energy o f  about 25 Kcal. Butadiene formation 
is, of  course, favored a t  low temperatures and high pressures,  and 
acetylene a t  high temperatures and low pressures .  Acetylene formation 
has been most thoroughly s tudied.  

a moiecular one i n  the c l a s s i c a l  sense, without t he  formation of free 
radfcals .  The most d i r e c t  evidence f o r  t h i s  i s  t h a t  the Arrhenius 
rate equation holds all the way from 2 t o  95% ethylene decouposition, 
while f o r  a chain reac t ion  the r a t e  should f a l l  off a t  high conver- 
s ions.  Moreover, t h e  product d i s t r i b u t i o n  (almost a l l  hydrogen and 
acetylene a t  h igh  temperatures and low pressures)  remained the  same 
up t o  95% decomposition. 
t i o n  is j u s t  s l i g h t l y  more than the hea t  of react ion (44 Kcal. a t  
1500'K.) (i2), and w e  have not  been able  t o  t h i n k  of  a f r ee - r ad ica l  
mechanism which would give t h i s  ac t iva t ion  energy. 

Experiments with an ethylene-acetylene mixture show tha t  butadiene 
i s  not formed by react ion o f  e t h y l e n e  wi th  product acetylene,  but comes 
more d i r e c t l y  from ethylene,  e i t h e r  by a s t r a i g h t  bimolecular reaction, 
or perhaps through dimerization t o  butylene followed by loss of 
hydrogen. No butylenes were found, so they a r e  unstable intermediates 
if they form a t  a l l .  

E t h  lene Shock tube s t u d i e s  on ethylene pyrolysis  between 

In  con t r a s t  t o  ethane pyrolysis ,  th i s  react ion does seem t o  be 

Eie a c t i v a t i o n  energy f o r  acetylene forma- 

Acet lene. Pyrolysis  o f  acetylene has been studied i n  shock 

between 900 and 2000°C. There i s  agreement t h a t  the o v e r a l l  react ion 
i s  second-order, and the observed r a t e  constants  a r e  about the same. 
Acetylene i s  qui te  stable a t  high temperatures, compared t o  ethane 
and ethylene. The only d i f fe rence  i n  the t w o  s e t s  of da t a  i s  t h a t  we 
found vinylacetylene and hydrogen t o  be . the  major pyrolysis  products, 
while Greene found diacetylene t o  be a more important product than 
vinylacetylene.  !The l a t t e r  compound seems without doubt t o  be the 

tubes + y G r e e n e ,  Taylor and Pat terson (19) and by the author  (20),  



65 

Y 

0, -2 
3 

Q -Kemrkion et al (9) 
a -Skinner 8 Ruehrwein ( 8 )  
x -Shantorovich 8 PaVlOV ( 1 1 )  
0 - Kassel (10) 

X 

X 

X 

0 
X 

0 
-4 

0 
0 

-E 

4 
I I I I I 

7 8 9 10 5 6 

IO~IT, OK 

FIG. 6 .  Rate Constants far Methane Pyrolysis 



66. 

,399 ')I 607 I- 

! 

L 

P 

3 

, 
I 

, 



, 
I 

\ 

1 

a 

f i rs t  Pyrolysis  product o f  acetylene i n  t h i s  temperature range, s ince 
it appears a t  low conversions before any hydrogen i s  observed. 
subsequent s t eps  have not been defined, but  probably involve f u r t h e r  
polymerizations and condensations t o  produce benzene and condensed 
aromatic compounds which eventual ly  may be thought of as carbon, a s  
discussed by Smith, Gordon and McNesby (21).  These pyro lys i s  products 
intermediate between acetylene and carbon ca ta lyze  the decomposition 
reaction, so t h e  r a t e  increases  a s  decomposition proceeds. When 
hydrogen was added t o  the  acetylene,  butadiene rather than vinyl- 
acetylene was formed, and the o v e r a l l  r a t e  of acetylene decomposition 
was l e s s  than i n  the  absence of hydrogen. That i-s, hydrogen i n h i b i t s  
acetylene decomposition by converting r e a c t i v e  vinylacetylene t o  
r e l a t i v e l y  unreactive butadiene. 

In  conclusion, shock tube s t u d i e s  have added much t o  our  
understanding o f  t h e  high temperature pyro lys i s  r eac t ions  of these 
simple hydrocarbons. On the o t h e r  hand, many i n t e r e s t i n g  problems 
remain  t o  be solved. 

The 
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